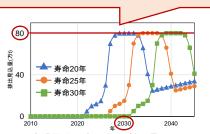
化学反応理論に基づいた太陽光パネル廃ガラスの コンクリート分野へのリサイクルに関する研究

2024年 I 0月24日 李春鶴

研究背景

◆ 太陽光パネルの廃棄問題



◆ リサイクル促進

- ・再使用
- ・舗装材, 埋め戻し材
- ・埋め立て処理

2030年以降 約80万t/年の 太陽光発電設備が廃棄

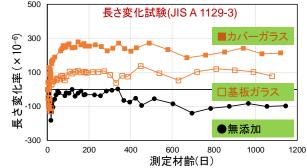
太陽電池モジュールの排出量見込み

コンクリート分野でリサイクル

環境省、太陽光発電設備のリサイクル等の推進に向けたガイドライン

太陽光パネルガラスの化学組成とアルカリシリカ反応(ASR)

	wt% メーカー	SiO ₂	Na₂O	K ₂ O	CaO	MgO	Al ₂ O ₃	SO ₃	Sb ₂ O ₃	
ν ш	S社	70	13	-	8.7	4.2	1.3	0.2	0.2	リコ
メーカ(C社	68	13	-	8.6	4.0	1.2	0.2	0.2	サン
カ(主 化カな	P社	72	13	-	8.9	4.0	1.3	0.2	0.2	イク
学バ太	T社	72	13	1	9.7	3.6	1.2	0.2	0.2	クリルー
組し陽	M社	71	13	1	8.4	4.7	1.1	0.2	0.1	可ト
成ガ光ラパ	J社	71	13	1	8.8	4.1	1.4	0.2	0.2	能分
ラススの	H社	72	13	1	9.7	3.5	0	0.2	0.2	性野
	平均	71	13	1	9.0	4.0	1.2	0.2	0.2	有で


リスク: ASR反応が生じる可能性 大

事実: 品質安定、安定供給可能

先 行 研 究

wt%	SiO₂	Na₂O	K₂O	CaO	MgO	Al ₂ O ₃	Fe₂O₃	Sb ₂ O ₃
カバー	72.5	13.5	0.5	9	3.5	1.5	≦0.009	≦0.009
基板	49.9	6.3	4.7	5.5	_	13.0	0.1	0

アルカリシリカ反応(ASR)性試験の判定基準

- √ 材齢91日で500µ以下
- √材齢182日で1000µ以下

- カバーガラス
 EVA
 CIS電池暦
 基板ガラス
 EVA
 バックシート
 - CIS太陽電池モジュール
- ▶ なぜ膨張?
- ▶ 膨張を制御・有効活用できる?
- > 実用化の可能性?

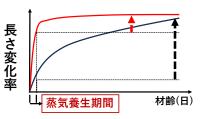
研究目的(膨張生成物の有効利用のコンセプト)

提案1:ガラス反応生成物量的制御に よる無収縮・高強度コンクリートの開発

混和材 ・・・ 反応性骨材のASR抑制対策
→ フライアッシュ + 廃ガラス

酸処理・・・ 太陽光パネル処理の一般プロセス 廃ガラス50kgに対して52ppmの硝酸溶液150gで処理

提案2:ガラス反応生成物の生成時期 の制御によるプレキャストコンクリート製 品の開発



製品例

▶ 膨張性生物の制御

⇒空隙充填

⇒無収縮・高強度

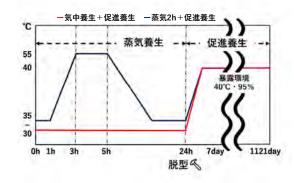
> 早期の膨張生成物の生成 ⇒膨張の潜在能力を低減

実験概要:配合設計

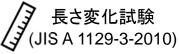
◆ モルタル供試体の配合(kg/m³)

	20%置換					☆60%置換			
記号			C	FA	W	S GP			
PL			612	0	306	1340	0		
F20			476	119	297	1340	0		
	酸なし	G60	612	0	306	536	729		
カバー	酸なし	G60F20	476	119	297	536	729		
基板	酸あり	G60	611	0	307	536	728		
		G60F20	475	119	299	535	727		

☆添加率60%付近でペシマムを確認 季ら, JSCE2021 Annual Meeting

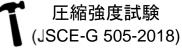

実験概要:養生条件

- ◆蒸気養生および促進養生
 - ✓ 蒸気養生:早期反応促進



▶ 前置き時間:1h ▶ 最高温度:55°C

▶ 最高温度継続時間:2h



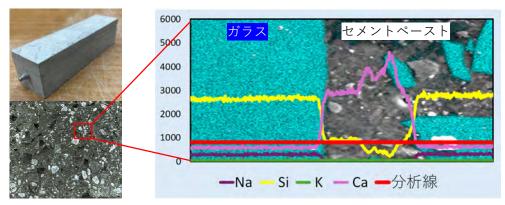
実験概要:実験項目

- 40 × 40 × 160mm
- ・40°C95%で養生
- ・材齢0~1000日

- φ50 × 100mm
- 20,40℃の水中養生
- 材齢7,14,28,91日

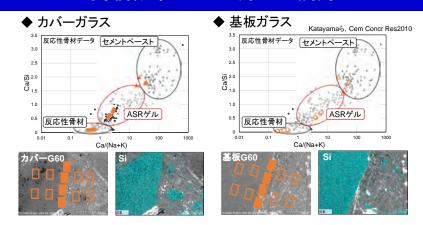
化学法 (JIS A 1145-2017)

アルカリ濃度減少量(Rc)と 溶解シリカ量(Sc)から、骨材の 潜在的アルカリ反応性を判定

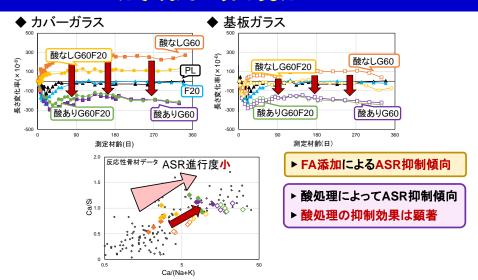


X線光電子分光法 (XPS) 走查電子顕微鏡 (SEM-EDX)

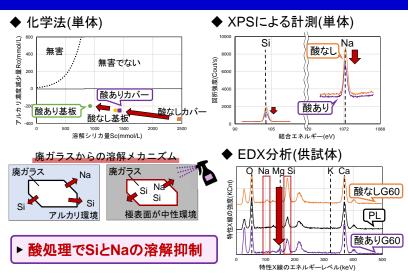
廃ガラス単体. 供試体に対して 表面観察と組成分析


セメント環境における廃ガラスの反応性の確認

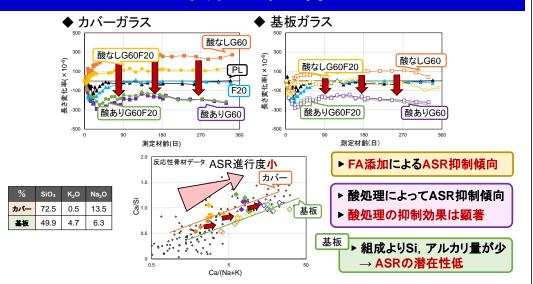
· 40°C、95%で養生 · 暴露期間4年程度 · SEM-EDX分析

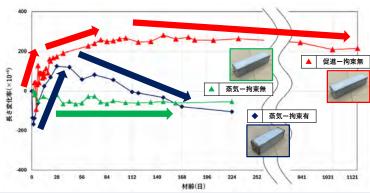

ガラスとセメントペーストの境界において、Si、Naは減少し、Caは増加

実験結果 ASR反応の検討

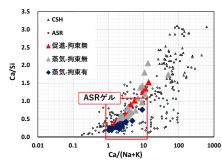


▶ 境界面でASRゲルを確認→ 供試体は膨張傾向


化学反応と長さ変化

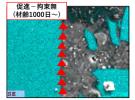

実験結果 酸処理効果

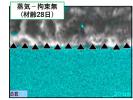
化学反応と長さ変化

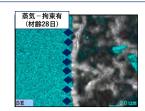


異なる養生の効果:長さ変化

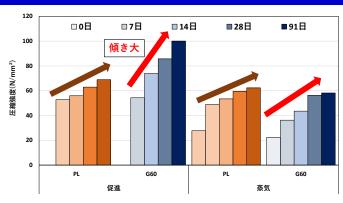
- ▶ 促進 拘束無はASRによる膨張(約300 µ)、材齢1000日~膨張継続
- ▶ 蒸気 拘束無は安定、材齢極初期にASRによる反応が生じた
- ➤ 蒸気養生による 材齢極初期からのASRの膨張傾向、その後はASRの早期反応終了に伴い収縮、安定傾向


組成分析




廃ガラスを添加した供試体は ASRゲルを生成

蒸気養生により促進養生(材齢 1000日~)と同等のASR生成


蒸気養生より反応が極初期に 促進、ASRの潜在能力が減少

異なる養生の効果:圧縮強度

- ▶ 促進G60は硬化後にASRが生じたことにより空隙が埋められ強度が大きく増加
- ▶ 蒸気G60はASRの終了に伴い強度増加が減少、PLと同程度の強度

まとめ

- 廃ガラスのコンクリートのようなアルカリ環境におけるASR反応メカニズムを解明
 - 廃ガラスの膨張メカニズムの解明→ ASRによる膨張生成物の生成 廃ガラスの膨張抑制メカニズムの解明→ 酸処理, FA添加によるASR抑制
- 促進養生により、無収縮・高強度コンクリートの製造可能
- 蒸気養生により、早期に膨張を収束可能、強度の低下ほとんど無

太陽光パネル廃ガラスは コンクリート分野でのリサイクルが可能

深く御礼申し上げます。

2017年~2018年度助成金:環境作用とLiNO₂化学反応の強連成に基づいた鉄筋コンクリート構造物の補修に関する研究

2020年~2022年度 科学研究補助金 **基盤研究**(B)

2022年~2023年度助成金:化学反応理論に基づいた太陽光 パネル廃ガラスのコンクリート分野へのリサイクルに関する研究

英論ジャーナルへ投稿中